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Abstract— Semantic segmentation of urban scenes is an essen-
tial component in various applications of autonomous driving.
It makes great progress with the rise of deep learning tech-
nologies. Most of the current semantic segmentation networks
use single-modal sensory data, which are usually the RGB
images produced by visible cameras. However, the segmentation
performance of these networks is prone to be degraded when
lighting conditions are not satisfied, such as dim light or darkness.
We find that thermal images produced by thermal imaging
cameras are robust to challenging lighting conditions. Therefore,
in this article, we propose a novel RGB and thermal data fusion
network named FuseSeg to achieve superior performance of
semantic segmentation in urban scenes. The experimental results
demonstrate that our network outperforms the state-of-the-art
networks.

Note to Practitioners—This article investigates the problem of
semantic segmentation of urban scenes when lighting conditions
are not satisfied. We provide a solution to this problem via
information fusion with RGB and thermal data. We build an
end-to-end deep neural network, which takes as input a pair
of RGB and thermal images and outputs pixel-wise semantic
labels. Our network could be used for urban scene understanding,
which serves as a fundamental component of many autonomous
driving tasks, such as environment modeling, obstacle avoidance,
motion prediction, and planning. Moreover, the simple design of
our network allows it to be easily implemented using various
deep learning frameworks, which facilitates the applications on
different hardware or software platforms.

Index Terms— Autonomous driving, information fusion,
semantic segmentation, thermal images, urban scenes.

I. INTRODUCTION

SEMANTIC image segmentation generally refers to
densely label each pixel in an image with a category.

Recent years have witnessed a great trend for semantic seg-
mentation shifting from traditional computer vision algorithms
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to deep learning-based approaches, in which convolutional
neural networks (CNNs) have been proven to be really effec-
tive in tackling the semantic segmentation problem. With
the popularities of autonomous vehicles [1]–[5] and human-
assistant driving [6]–[9], semantic segmentation of urban
scenes has attracted great attention. It has become a fun-
damental component for autonomous driving. For example,
it provides contributive information to improve point-cloud
registration [10]–[12], which is the backbone of many local-
ization and mapping algorithms [13]–[17]. Note that the type
of urban scenes we are considering is the street scene because
we use the public data set released in [18] and the data set is
recorded in urban street scenes.

Currently, most of the deep learning-based semantic seg-
mentation networks are designed using single-modal sensory
data, which are usually RGB images generated by visible cam-
eras. However, RGB images could become less informative
when lighting conditions are not satisfied, such as dim light
or total darkness. We found that thermal images are robust
to challenging lighting conditions. They are transformed from
thermal radiations by thermal imaging cameras. Virtually, any
matter with temperature above absolute zero could be seen
with thermal [21]. The spectrum of thermal radiations ranges
from 0.1 to 100 μm, whereas the visible light ranges from
0.4 to 0.76 μm. Most of the thermal radiations are invisible
to human eyes or imaging sensors (e.g., CCD or CMOS) but
visible to thermal imaging cameras. Therefore, thermal images
could be helpful to detect and segment objects when lighting
conditions are not satisfactory.

Note that Lidars can also work in unsatisfactory light-
ing conditions. The advantages of using thermal imaging
cameras lie in fourfold. First, thermal imaging cameras are
expensive than visible cameras, but they are still much
cheaper than Lidars. For price-sensitive applications, such as
driver assistance systems, solutions based on thermal imaging
cameras would be more attractive. Second, thermal images
are grayscale visual images in nature. Therefore, technol-
ogy advancements in computer vision could directly benefit
thermal imaging applications. For example, successful CNNs
could be directly used on thermal images to extract features
without any modification. While Lidar point clouds have
different data structures from images, they are sparse point lists
instead of dense arrays [22]–[24]. Computer vision techniques
might not be directly used on Lidar point clouds [23]. Third,
thermal imaging cameras can provide real-time dense images,
such as visible cameras. For instance, the FLIR automotive
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thermal cameras1 could stream thermal images with the reso-
lution of 512×640 and can run at 60 Hz. However, Lidar point
clouds are much sparser than thermal images, and the frame
rates are slow. For example, the Velodyne HDL-64E S3 can
only rotate up to 20 Hz [25]. As a semantic understanding
device, the sparse measurements (64 lines) may overlook
object details or far-distance small objects, and the slow frame
rate may introduce artifacts or motion distortions that may
hinder the perception. Finally, current spinning Lidars are
mechanically complex, which mainly stems from the optical
beam deflection unit. The mechanical parts, such as motors
and gears, are subject to friction and abrasion, making Lidars
less durable in long-term operation. In addition, autonomous
vehicles usually require Lidars to be installed outside, which
may directly expose them under adverse weather conditions
and hence shorten the life expectancy, whereas thermal imag-
ing cameras are only electronic devices and could be placed
inside vehicles, such as visible cameras. They could work in
long term without extra maintenance.

Many researchers resort to Lidar-camera fusion to overcome
the limitations of solely using visible cameras. For example,
Gao et al. [26] proposed a CNN-based method for object
classification with Lidar-camera fusion. They convert the
sparse Lidar point clouds to front-view depth images and
upsample the depth images to dense ones. Then, the depth
images and RGB images can be registered and processed
by CNN. Qi et al. [27] proposed a cascade Lidar-camera
fusion pipeline, in which 2-D region proposals are extracted
from front-view RGB images with a 2-D image-based object
detector, and then, the region proposals are projected to
3-D frustums in point clouds. The points in the frustums
are processed by PointNet to get the instance segmentation
results. Despite the success of Lidar-camera fusion methods,
we still think that RGB-thermal fusion would be more
suitable than Lidar-camera fusion for semantic reasoning
in autonomous driving. Because vulnerable road users,
such as pedestrians, normally have higher temperatures
than surrounding environments, they are more discernible
in thermal images, which could provide strong signals for
segmentation. In addition, thermal imaging cameras can
work at 60 Hz or higher, which allows semantic reasoning
to be performed space intensively. Taking 70-km/h vehicle
speed as an example, the vehicle moving distance between
two consecutive images from a 60-Hz camera is around
(70 × 103/60 × 3600) ≈ 0.3 m. Such a distance between two
times of semantic reasoning would be sufficient for most cases.

In this article, we fuse both the RGB and thermal data
in a novel deep neural network to achieve superior perfor-
mance in urban scenes. In particular, from the probabilistic
data fusion theory [28], we have to find P(Seg|x1, x2) =
P(x2|Seg, x1)P(x1|Seg)P(Seg)/P(x1 x2), where P(·) repre-
sents the probability functions, Seg represents the segmenta-
tion results, x1 and x2 represent the RGB and thermal data,
respectively, and P(x1 x2) is usually the constant normalization
term. The main novelty of this article lies in the network archi-
tecture, especially the data fusion strategy and the proposed

1https://www.flir.com/products/adk

Fig. 1. Qualitative comparison with two state-of-the-art networks in an almost
total darkness lighting condition. A person on a bike is almost invisible in the
RGB image but can be clearly seen in the thermal image. We can see that
both the SegHRNet [19] and DFN [20] fail to correctly segment the objects,
whereas our FuseSeg can give an acceptable result. The yellow and blue
colors in the mask images represent person and bike, respectively. The other
colors represent other classes. The figure is best viewed in color. (a) RGB
image. (b) Thermal image. (c) Ground truth. (d) SegHRNet. (e) DFN. (f) Our
FuseSeg.

decoder. The example in Fig. 1 shows that a person is clearly
visible in the thermal image even the environment is with
almost total darkness. We can see that our FuseSeg provides
an acceptable segmentation result for the person, whereas the
other two networks fail to segment the person. The example
demonstrates that the networks relying only on RGB data
could be degraded when lighting conditions are not satisfied,
and our data fusion-based network could be a solution to
address the problem. The contributions of this article are listed
as follows.

1) We develop a novel RGB-thermal data fusion network
for semantic segmentation in urban scenes. The net-
work can be used to get accurate results when lighting
conditions are not satisfied, for instance, dim light,
total darkness, or on-coming headlights, which is an
advantage over the single-modal networks.

2) We construct our Bayesian FuseSeg using the Monte
Carlo (MC) dropout technique [29] to analyze the
uncertainty for the semantic segmentation results. The
performance with different dropout rates is compared.

3) We evaluate our network on a public data set released
in [18]. The results demonstrate our superiority over the
state of the arts. We also evaluate our network on the
SUN-RGBD v1 data set [30]. The results demonstrate
our generalization capability to RGB-D data.

The remainder of this article is organized as follows.
In Section II, we review the related work. In Section III,
we describe our network in detail. Sections IV–VI present the
experimental results and discussions. Conclusions and future
work are drawn in Section VII.

II. RELATED WORK

The related work to this article includes single-modal and
data fusion semantic segmentation networks, as well as com-
puter vision applications using thermal imaging. We review
several representative works in each field.
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A. Single-Modal Semantic Segmentation Networks

The first work addressing the semantic segmentation
problem end-to-end was the fully convolutional
networks (FCNs) proposed by Shelhamer et al. [31].
They modified image classification networks, such as
VGG-16 [32], into the fully convolutional form to achieve
pixel-wise image segmentation. Noh et al. [33] developed
DeconvNet that consists of a convolutional module for feature
extraction and a deconvolutional module for resolution
restoration. Badrinarayanan et al. [34] introduced the
encoder–decoder concept in SegNet. The functionalities
of encoder and decoder are analogous to those of the
convolutional and deconvolutional modules in DeconvNet.
Ronneberger et al. [35] developed UNet by introducing skip
connections between the encoder and the decoder. It was
proven to be effective to keep the spatial information by the
skip connections. Although UNet was initially designed for
biomedical imaging, it generalizes well to other domains.
Paszke et al. [36] designed ENet for efficient semantic
segmentation by speeding up the inference process of the
initial block. They proposed a pooling operation in parallel
with a convolutional operation with a stride of 2. Moreover,
the asymmetric convolutions were employed in its bottleneck
module to reduce the redundancy of convolutional weights.
Zhao et al. [37] observed that context information could be
helpful to improve semantic segmentation performance. Based
on this observation, they introduced the pyramid pooling
module (PPM) in PSPNet to extract local and global context
information at different scales. Wang et al. [38] designed the
dense upsampling convolution (DUC) and the hybrid dilated
convolution (HDC) for decoder and encoder, respectively.
Compared with bilinear upsampling and deconvolution
networks, DUC is learnable and free of zero padding.
HDC can alleviate the gridding issue during downsampling.
Pohlen et al. [39] proposed FRRN for semantic segmentation,
which consists of two processing streams. One stream
maintains the feature map resolution at the input level. The
other one performs pooling operations to increase the size
of the receptive field. The two streams are coupled in the
proposed FRRU block. Yu et al. [20] proposed DFN to
address two common challenges in semantic segmentation:
the intraclass inconsistency problem and the interclass
indistinction problem. It mainly consists of a smooth network
to capture the multiscale and global context information,
as well as a border network to discriminate the adjacent
patches with similar appearances but different class labels.
ERFNet was developed by Romera et al. [40] for efficient
semantic segmentation. The core components of ERFNet are
the proposed 1-D convolutional layers with the kernel sizes of
3 × 1 and 1 × 3. The 1-D convolutional layers are combined
with skip connections to form a residual block, which is
integrated with an encoder–decoder architecture. Yu et al. [41]
proposed BiSeNet that mainly consists of a spatial path and
a context path. The spatial path was designed to preserve the
spatial information. It contains three sequential downsampling
convolutional operations, which reduces the feature map
resolution to 1/8 of the original input size. The context path

was designed to provide a sizeable receptive field. An attention
refinement module was developed in the context path for
performance refinement. Sun et al. [42] developed HRNet that
was able to keep high-resolution representations through the
whole encoding process. The network was designed for human
pose estimation but can be utilized as a general CNN backbone
for other computer vision tasks. They improved HRNet by
upsampling low-resolution representations to high resolution
[19], with which semantic segmentation maps could be
estimated.

B. Data Fusion Semantic Segmentation Networks

Apart from using the single-modal RGB data, depth data
from RGB-D cameras [43] have been exploited for seman-
tic segmentation. Hazirbas et al. [44] proposed FuseNet by
fusing RGB and depth data in an encoder–decoder struc-
ture. In FuseNet, two encoders using VGG-16 as backbone
were designed to take as inputs the RGB and depth data,
respectively. The feature maps from the depth encoder were
gradually fused into the RGB encoder. Wang and Neumann
[45] fused RGB and depth information for semantic segmen-
tation by introducing the depth-aware convolution and depth-
aware average pooling operations, which incorporate geometry
information in conventional CNN. They computed the depth
similarities between the center pixel and neighboring pixels.
The neighboring pixels with close depth values were weighted
to contribute more in the operations. For semantic segmenta-
tion of urban scenes, MFNet [18] and RTFNet [46] were both
proposed to use RGB and thermal data. Ha et al. [18] designed
MFNet by fusing RGB and thermal data in an encoder–
decoder structure. Two identical encoders were employed to
extract features from RGB and thermal data, respectively.
A mini-inception block was designed for the encoder. RTFNet
[46] was also designed with two encoders and one decoder.
In the decoder of RTFNet, two types of upception blocks
were designed to extract features and gradually restore the
resolution.

C. Computer Vision Applications Using Thermal Imaging

Apart from semantic segmentation, thermal imaging has
been used in other computer vision applications, such as
facial expression recognition [48]. Wang et al. [49] proposed
a thermal-augmented facial expression recognition method.
They designed a similarity constraint to jointly train the
visible and thermal expression classifiers. During the testing
stage, only visible images are used, which could reduce the
cost of the system. Yoon et al. [50] utilized thermal images
for drivable road detection at nighttime. A Gabor filter was
applied to thermal images to find textureless areas that were
considered as the rough detection results for the drivable road.
Superpixel algorithms were employed on thermal images to
smooth the segmentation results. Knapik and Cyganek [51]
developed a yawn detection-based fatigue recognition method
using thermal imaging for driver assistance systems. The
method consists of a face detection module, an eye-corner
localization module, and a yawn detection module. The yawn
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Fig. 2. Overall architecture of our FuseSeg. It consists of an RGB encoder, a thermal encoder, and a decoder. We employ DenseNet [47] as the backbone
of the encoders. In the first stage of two-stage fusion (TSF), the thermal feature maps are hierarchically added with the RGB feature maps in the RGB
encoder. The fused feature maps are then concatenated with the corresponding decoder feature maps in the second fusion stage. The blue rectangles represent
the feature maps. The white rectangles represent the fused features maps copied from the RGB encoder. The purple and green arrows represent the feature
extractor and the upsampler in the decoder, respectively. s represents the input resolution of the RGB and thermal images. s = 480 × 640 in this article. The
feature maps at the same level share the same resolution. cn represents the number of channels of the feature maps at different levels. Cat, Conv, Trans Conv,
and BN are short for concatenation, convolution, transposed convolution, and batch normalization. The figure is best viewed in color.

detection is inferred from a thermal-anomaly detection model,
which is based on the temperature change measurement from
the thermal imaging camera.

III. PROPOSED NETWORK

A. Overall Architecture

We propose a novel data fusion network named FuseSeg.
It generally consists of two encoders to extract features from
input images and one decoder to restore the resolution. The
two encoders take as input the three-channel RGB and one-
channel thermal images, respectively. Fig. 2 shows the overall
structure of our FuseSeg. We employ DenseNet [47] as the
backbone of the encoders. We innovatively propose a TSF
strategy in our network. As shown in Fig. 2, in the first stage,
we hierarchically fuse the corresponding thermal and RGB
feature maps through elementwise summation in the RGB
encoder. Inspired by [35], the fused feature maps except the
bottom one are then fused again in the second stage with the
corresponding feature maps in the decoder through tensor con-
catenation. The bottom one is directly copied to the decoder
instead of concatenation. With our TSF strategy, the loss of
spatial information through the intensive downsampling could
be recovered.

B. Encoders

The RGB and thermal encoders are designed with the
same structure except for the input dimension because the
input data are with different channels. As aforementioned,
we use DenseNet as the backbone. We first delete the clas-
sification layer in DenseNet to avoid excessive loss of spatial
information. Then, we add a transition layer that is similar

to other transition layers after the fourth dense block. The
dense blocks in DenseNet keep the feature map resolution
unchanged, whereas the initial block, the max-pooling layer,
and the transition layers reduce the feature map resolution by
a factor of 2. Note that the feature map resolution has been
reduced to 15 × 20 (given the input resolution of 480 × 640)
before the final transition layer. Because we disable the ceiling
mode of the average pooling operation in the final transition
layer, the feature map resolution after the final transition layer
is reduced to 7 × 10 (not 8 × 10). There are four architectures
for DenseNet: DenseNet-121, DenseNet-169, DenseNet-201,
and DenseNet-161. The complexity increases from 121 to
161. DenseNet-161 possesses the most number of parameters
because it is grown with the largest rate of 48, whereas the
others share the growth rate of 32. We refer readers to [47] for
the details of DenseNet. Our FuseSeg follows the same naming
rule of DenseNet. The number of channels cn in Fig. 2 varies
with different DenseNet architectures. Detailed numbers are
listed in Table I.

C. Decoder

The decoder is designed to gradually restore the feature map
resolution to the original. We design a decoder that mainly
consists of three modules: a feature extractor that sequentially
contains two convolutional layers, an upsampler, and an out
block that both contain one transposed convolutional layer.
Note that there are a batch normalization layer and a ReLu
activation layer followed by the convolutional and transposed
convolutional layers in the feature extractor and the upsampler.
The detailed configurations for the convolutional and trans-
posed convolutional layers are displayed in Table II.
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TABLE I

NUMBER OF FEATURE MAP CHANNELS cn AT DIFFERENT LEVELS
ACCORDING TO DIFFERENT DENSENET ARCHITECTURES

TABLE II

CONFIGURATIONS FOR THE CONVOLUTIONAL (CONV) AND TRANSPOSED

CONVOLUTIONAL (TRANS CONV) LAYERS IN THE INDIVIDUAL MOD-
ULES OF THE DECODER

The feature extractor is employed to extract features from
the fused feature maps. It keeps the resolution of the feature
maps unchanged. Both the upsampler and out block increase
the resolution by a factor of 2. The out block outputs the
final prediction results with the channel number of 9, which
is the number of classes. We add a softmax layer after the
output to get the probability map for the segmentation results.
As aforementioned, the feature map resolution is 7 × 10 at
the end of the encoder. To restore it to 15 × 20, we employ a
padding technique at this level of upsampler. The upsampled
feature map is concatenated with the one from the RGB
encoder during the second stage of our TSF. The number of
feature channels doubles after the concatenation.

IV. EXPERIMENTAL SETUP

A. Data Set

In this article, we use the public data set released by
Ha et al. [18]. It was recorded in urban street scenes, which
contains common objects: car, person, bike, curve (road lanes),
car stop, guardrail, color cone, and bump. The images are cap-
tured at the 480 × 640 resolution by an InfReC R500 camera,
which can provide RGB and thermal images simultaneously.
There are 1569 registered RGB and thermal images in the data
set, among which 749 are taken at nighttime and 820 are taken
at daytime. The data set was provided with hand-labeled pixel-
wise ground truth, including the aforementioned eight classes
of common objects and one unlabeled background class.

B. Training Details

We train the networks on a PC with an Intel i7 CPU
and an NVIDIA 1080 Ti graphics card, including 11-GB
graphics memories. We accordingly adjust the batch sizes for
the networks to fit the graphics memories. We employ the data
set splitting scheme used in [18]. The training set consists
of 50% of the daytime images and 50% of the nighttime

images, whereas the validation and test sets both consist of
25% of the daytime images and 25% of the nighttime images.
The training set is augmented with the flip technique. Our
FuseSeg is implemented with the PyTorch. The convolutional
and transposed convolutional layers in the decoder are initial-
ized using the Xavier scheme [52]. The encoder layers are
initialized using the pretrained weights provided by PyTorch.
We use the stochastic gradient descent (SGD) optimization
solver and the cross-entropy loss for training. The learning
rate is decayed exponentially. The networks are trained until
no further decrease in the loss is observed.

C. Evaluation Metrics

For the quantitative evaluation, we use the same metrics
from [46]: Accuracy (Acc) and intersection over union (IoU).
Let Acci and IoUi denote the Acc and IoU for class i . They
are computed in the formulas

Acci =
∑K

k=1 θ k
ii∑K

k=1 θ k
ii + ∑K

k=1

∑N
j=1, j �=i θ k

i j

, (1)

IoUi =
∑K

k=1 θ k
ii∑K

k=1 θ k
ii + ∑K

k=1

∑N
j=1, j �=i θ k

j i + ∑K
k=1

∑N
j=1, j �=i θ k

i j

,

(2)

where θ k
ii , θ k

i j , and θ k
j i represent in the image k the number

of pixels of class i that are correctly classified as class i ,
the number of pixels of class i that are wrongly classified as
class j , and the number of pixels of class j that are wrongly
classified as class i , respectively. K and N represent the
number of test images and the number of classes, respectively.
N = 9 in this article. We use mAcc and mIoU to represent
the arithmetic average values of Acc and IoU across the nine
classes.

V. ABLATION STUDY

A. Ablation for Encoders

1) Encoder Backbone: Since ResNet [53], WideResNet
[54], ResNext [55], and HourglassNet [56] have similar struc-
tures as DenseNet, we replace DenseNet with these networks
and compare their performance with ours. The quantitative
results are listed in Table III. As we can see, using DenseNet-
161 achieves the best performance, which confirms the effec-
tiveness of our choice.

2) Single-Modal Performance: We delete the thermal
encoder of FuseSeg to see the performance without using
the thermal information. We name this variant as no thermal
encoder (NTE). Similarly, we delete the RGB encoder to see
how the network performs given only the thermal information.
The variant is termed no RGB encoder (NRE). In these two
variants, the first-stage fusion in our TSF strategy is canceled
since there is only one encoder in the networks. We display
the results with respect to different DenseNet architectures
in Table IV. We can see that all the networks using DenseNet-
161 gain more accuracy than the others. The superior perfor-
mance is expected because DenseNet-161 presents the best
image classification performance among the four DenseNet
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TABLE III

RESULTS (%) OF ABLATION STUDY FOR ENCODERS USING DIFFERENT BACKBONES ON THE TEST SET. WE USE DENSENET-161 IN OUR NETWORK.
BOLD FONT HIGHLIGHTS THE BEST RESULTS

TABLE IV

RESULTS (%) OF ABLATION STUDY FOR ENCODERS ON THE TEST SET.
OURS DISPLAYS THE RESULTS OF OUR FUSESEG. BOLD FONT HIGH-

LIGHTS THE BEST RESULTS

architectures. Moreover, our FuseSeg outperforms NTE and
NRE, proving that the data fusion is a benefit here. Comparing
NTE and NRE, we find that all the NRE results are better than
those of NTE. This indicates that thermal information plays a
significant role in our network.

B. Ablation for Fusion Strategy

For the ablation of fusion strategy, we compare the TSF
proposed in our FuseSeg with seven variants. The former four
variants modify the first stage of our TSF strategy. The next
two modify the second stage. The last one modifies both the
first stage and the second stage. The detailed descriptions for
the variants are listed as follows.

1) OEF: This variant deletes all the fusion connections
between the two encoders and keeps only one encoder.
The encoder is fed with four-channel RGB-thermal data,
so it is a version of only early fusion (OEF).

2) HEF: This variant keeps network unchanged, except that
the RGB encoder is fed with four-channel RGB-thermal
data, so it has early fusion (HEF).

3) OLF: This variant deletes the fusion connections
between the two encoders except the last one, so the
encoder feature maps are performed with only late
fusion (OLF). Since there is no fusion between RGB
and thermal at other levels, only the RGB feature maps
are fused to the decoder at those levels.

4) RCF: The summation fusion between the encoders is
replaced with concatenation fusion (RCF). To keep the
number of channels unchanged, the concatenated feature
maps are processed with a 1 × 1 convolution layer to
reduce the number of channels.

5) NSC: This variant deletes all the fusion connec-
tions between the encoder and the decoder. Therefore,
the variant has no skip connection NSC) between the
encoder and the decoder except at the bottom level.

6) RSF: The concatenation fusion between the encoder
and the decoder is replaced with the summation

TABLE V

RESULTS (%) OF ABLATION STUDY FOR FUSION STRATEGY ON THE TEST

SET. ALL THE VARIANTS USE THE DENSENET-161 AS THE ENCODER

BACKBONE. OURS DISPLAYS THE RESULTS OF OUR FUSESEG-161.
BOLD FONT HIGHLIGHTS THE BEST RESULTS

fusion (RSF). The input dimension of the feature extrac-
tor in the decoder is correspondingly modified to take
as input the summarized feature map.

7) CSF: This variant combines RSF and RCF. Therefore,
it is performed with the concatenation and summation
fusion (CSF) at the first and second stages, respectively.

The results are displayed in Table V. Our FuseSeg with the
proposed TSF strategy presents the best performance, which
confirms the effectiveness of TSF. We find that OEF and
NSC both provide low performance. The reason for the OEF
performance could be that the features are not well extracted
with only one encoder even it is fed with four-channel data.
The inferior performance of NSC proves that the second-
stage fusion between the encoder and the decoder in our TSF
strategy is critical to improve the performance. We find from
the HEF results that having the early fusion at the input level
could degrade the performance. The OLF results show that
the fusions between the two encoders at different levels are
necessary for our network. From the results of RCF, RSF, and
CSF, we could find that using summation for the first stage
and concatenation for the second stage would be a superior
choice here.

C. Ablation for Decoder

In our FuseSeg, the feature extractor in the decoder consists
of two sequential Conv-BN-ReLu blocks, which is shown
in Fig. 2. We compare our FuseSeg with five variants that
have different feature extractors in the decoder. We list the
detailed information as follows.

1) TPC: The feature extractor mainly consists of two
parallel convolutional (TPC) layers.

2) OC: The feature extractor consists of only One Conv-
BN-ReLu (OC) block.

3) TSC: The feature extractor consists of three sequential
Conv-BN-ReLu (TSC) blocks.

4) THC: The feature extractor mainly consists of three
hybrid-organized convolutional (THC) layers.

5) FSC: The feature extractor consists of four sequential
Conv-BN-ReLu (FSC) blocks.
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Fig. 3. Detailed structures for TPC and THC. The figure is best viewed in
color.

The detailed structures for TPC and THC are shown
in Fig. 3. All the convolutional layers in the different feature
extractors share the same kernel size, stride, and padding with
ours. We also build three variants that replace the TranConv-
BN-ReLu block in the upsampler with different structures. The
detailed descriptions are listed as follows.

1) OCOI: The upsampler sequentially consists of One
Conv-BN-ReLu block and One Interpolation function
(OCOI). The stride of the convolutional layer in the
Conv-BN-ReLu block is 1. The scale factor for the
interpolation function is 2.

2) TPOI: The upsampler sequentially consists of two par-
allel convolutional layers and one interpolation function
(TPOI). The two parallel convolutional layers are similar
to those in TPC. The stride for the convolutional layers
is 1. The scale factor for the interpolation function is 2.

3) OCOT: The upsampler sequentially consists of One
Conv-BN-ReLu block and One TranConv-BN-ReLu
block (OCOT). The strides of the convolutional layers
in the Conv-BN-ReLu block and the TranConv-BN-ReLu
block are 1 and 2, respectively.

Table VI displays the results. For the feature extractor,
our FuseSeg with the simple two sequential Conv-BN-ReLu
blocks presents the best performance. OC, TSC, and FSC
also have a sequential structure. Their results show that the
performance decreases with the increasing number of layers
in the sequential structure. We find that the THC results are
close to ours. The reason could be that the summation of the
two parallel convolutional layers in THC actually resembles
the one convolutional layer in ours. It can be imagined as
breaking one convolutional layer into two convolutional layers
and then adding them together. This increases the number of
parameters, but the results show that it could not increase the
performance. A similar case happens to TPC and OC. The
two parallel convolutional layers in TPC resemble the one
convolutional layer in OC, so they share a similar performance,
but TPC is slightly worse than OC. For the upsampler,
we find that using the interpolation function (i.e., OCOI and
TPOI) to increase the feature map resolution presents infe-
rior performance. Comparing the results of ours and OCOT,
we find that only using one transposed convolutional layer to
simultaneously change the feature map dimension and increase
the feature map resolution would be sufficient for our network.

VI. COMPARATIVE STUDY

We compare our FuseSeg with FRRN [39], BiSeNet [41],
DFN [20], SegHRNet [19], MFNet [18], FuseNet [44],
DepthAwareCNN [45], and RTFNet [46] in this section. The
results of MFNet [18], FuseNet [44], and RTFNet [46] are

TABLE VI

RESULTS (%) OF ABLATION STUDY FOR THE DECODER ON THE TEST
SET. ALL THE VARIANTS USE THE DENSENET-161 AS THE ENCODER

BACKBONE. OURS DISPLAYS THE RESULTS OF OUR FUSESEG-161.
BOLD FONT HIGHLIGHTS THE BEST RESULTS

directly imported from [46] to facilitate comparison. We use
RTFNet-152, FRRN model B and HRNetV2-W48 here. The
results of SegNet [34], UNet [35], ENet [36], PSPNet [37],
DUC-HDC [38], and ERFNet [40] can be found in [46].
Our FuseSeg outperforms these networks. As FuseSeg uses
four-channel RGB-thermal data, to make fair comparisons,
we modify the input layers of the single-modal networks to
take as input the four-channel data. We train and compare them
using the three- and four-channel data, respectively.

A. Overall Results

Table VII displays the quantitative results for the compari-
son. We can see that our FuseSeg-161 outperforms the other
networks in terms of mAcc and mIoU. Among the single-
modal networks, both the DFN and SegHRNet present rela-
tively good results, which shows the generalization capabilities
of the networks. Comparing the three- and four-channel results
of the single-modal networks, we find that almost all the four-
channel results are better than the three-channel ones. This
demonstrates that using thermal information is beneficial to
the overall performance.

B. Daytime and Nighttime Results

We evaluate the networks under the daytime and nighttime
lighting conditions, respectively. The comparative results are
displayed in Table VIII. We find that FuseSeg outperforms
most of the other networks. For the daytime condition, some
of the single-modal networks using the three-channel data
are better than those using four-channel data. We conjecture
that the reason is that the registration errors [18] between
the RGB and thermal images confuse the prediction. In the
daytime, both RGB and thermal images encode strong fea-
tures, so temporal or spatial misalignments between the two-
modal data would give contradict information and thus degrade
the performance. For the nighttime condition, almost all the
single-modal networks provide superior performance when
using the four-channel data. This is expected because RGB
images are less informative when lighting conditions are not
well satisfied. Incorporating visible thermal images could help
the segmentation.

C. Inference Speed

Table IX displays the approximate number of parameters
and the inference speed for each network. The speed is
evaluated on an NVIDIA GTX 1080 Ti and an NVIDIA Jetson
TX2 (Tegra X2). For the single-modal networks, we only test
with four-channel data. We find that almost all the networks
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TABLE VII

COMPARATIVE RESULTS (%) ON THE TEST SET. 3c AND 4c REPRESENT THAT THE NETWORKS ARE TESTED WITH THE THREE-CHANNEL
RGB DATA AND FOUR-CHANNEL RGB-THERMAL DATA, RESPECTIVELY. NOTE THAT THE MACC AND MIOU ARE CALCULATED

WITH THE UNLABELED CLASS, BUT THE RESULTS FOR THE UNLABELED CLASS ARE NOT DISPLAYED. THE BOLD

FONT HIGHLIGHTS THE BEST RESULT IN EACH COLUMN

TABLE VIII

COMPARATIVE RESULTS (%) IN DAYTIME AND NIGHTTIME. THE BOLD

FONT HIGHLIGHTS THE BEST RESULT IN EACH COLUMN

run real-timely on 1080 Ti (i.e., greater than 30 Hz), but most
of them cannot run real-timely on TX2. Our FuseSeg reaches
only 1.7 Hz on TX2, making it not practical for real-time
applications on such low-level computing devices. In addition,
it would also be not practical to run our network on the
low-cost NVIDIA Jetson Nano and Intel Movidius, which are
weaker than TX2 [57]. We think that the double processing
(two-branch encoder) of images using complex backbones
(e.g., in the table ResNet-152 for RTFNet, DenseNet-161 for
ours) might be the major factor leading to the low speed.

D. Qualitative Demonstrations

Fig. 4 shows sample qualitative results for the data fusion
networks. We can see that our FuseSeg can provide superior

TABLE IX

NUMBER OF PARAMETERS AND INFERENCE SPEED FOR EACH

NETWORK. ms AND FPS REPRESENT MILLISECOND AND

FRAMES PER SECOND, RESPECTIVELY

results under various challenging lighting conditions. Specifi-
cally, in the second column, two persons behind the far bikes
are almost invisible in the RGB image due to the limited
dynamic range of the RGB camera, but they can be seen in
the thermal image. Our FuseSeg could take advantage of the
contributive thermal information to correctly segment the two
persons. In the seventh column, the bikes are almost invisible
in the thermal image, which may be caused by a similar
temperature with the environment. They can be seen a little
in the RGB image. Our FuseSeg could make use of the two-
modal information and correctly find the three bikes.

We also find that the results of FuseSeg and RTFNet are
very close to each other, but FuseSeg performs better because
it provides sharper object boundaries, especially in the first
column. By comparing FuseSeg and RTFNet, we conjecture
that this may be benefited from our connections between
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Fig. 4. Qualitative demonstrations for the fusion networks in typical daytime and nighttime scenarios, which are shown in the left four and right four
columns, respectively. We can see that our network can provide acceptable results in various lighting conditions. The comparative results demonstrate our
superiority. The figure is best viewed in color.

the encoder and the decoder. The detailed spatial informa-
tion could be retained through the short connections at each
level. This can also explain the unsatisfactory performance of
FuseNet because both FuseNet and RTFNet have no such short
connections. Note that although MFNet has such connections,
it still presents inferior performance compared with FuseSeg.
We think that the reason may stem from the tiny and weak
decoder of MFNet, in which only one convolutional layer is
contained at each stage. In addition, they use concatenation
for the encoder fusion and summation for the encoder–decoder
fusion, which we have proven inferior to our fusion strategy
(see the CSF variant in the ablation study). DepthAwareCNN
assumes that the pixels on the same object share similar depth
(replaced by temperature) values. However, this assumption is
violated here, which may explain its inferiority. For example,
the temperature of the car in the fifth column does not distrib-
ute evenly so that the car cannot be completely segmented.

E. Uncertainty Estimation

Estimating uncertainty for semantic segmentation can help
to know how much the predictions could be trusted. It is

an important capability to ensure safe decision-making for
autonomous vehicles. MC dropout has been successfully
employed to infer posterior distributions for the model parame-
ters of Bayesian networks. This article adopts the MC dropout
technique for uncertainty estimation [29]. We construct the
Bayesian FuseSeg by inserting dropout layers after the initial
blocks, max-pooling layers, and No.1 − 4 transition layers of
the RGB and thermal encoders. During runtime, we sample
the model T times, and here, we set T = 50. The uncertainty
ζ for each pixel is calculated by

ζ = − 1

N

N∑

n=1

p(ln|I, θ) log p(ln|I, θ) (3)

where I, θ , and ln represent the input image, network para-
meters, and label for the nth class, N is the number of
classes (N = 9), and p(·) is the average softmax output of
the network for each pixel over T times. The uncertainty
ζ actually calculates the entropy that measures the disorder
of different class probabilities at a pixel [58]. Large entropy
means large disorder and, hence, large uncertainty.
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Fig. 5. Uncertainty maps of the Bayesian FuseSeg-161 for the results shown in Fig. 4. The first and second rows are with dropout rates 10−4 and 10−2,
respectively. Uncertainties increase from blue to red. The figure is best viewed in color.

Fig. 6. Performance of Bayesian FuseSeg-161 according to different dropout
rates. We find that the semantic segmentation performance severely degrades
when the dropout rate is larger than 10−2.

TABLE X

QUANTITATIVE RESULTS (%) ON THE test SET OF THE SUN-RGBD
V1 DATA SET. BEST RESULTS ARE HIGHLIGHTED WITH BOLD FONT

Fig. 6 plots the semantic segmentation performance of the
Bayesian FuseSeg-161 according to different dropout rates.
We find that the performance degrades severely when the
dropout rate is larger than 0.01. The reason could be that a
large dropout rate could dramatically change the structure of
the network and hence severely influence the performance.
Fig. 5 shows the uncertainty maps of our Bayesian FuseSeg-
161 for different dropout rates. We observe that most of
the large uncertainties concentrate on object boundaries. This
indicates the ambiguities around the areas where the semantic
labels change from one to another. We also find that when the
model predicts wrong labels or objects are visually difficult
to identify, the uncertainties at these pixels are larger, for
example, the left person in the seventh column. Moreover,
the uncertainties for the 10−2 dropout rate are generally
larger than the 10−4 dropout rate, indicating that uncertainties
increase when the segmentation accuracy decreases.

F. Generalization to RGB-D Data

In order to validate the generalization capability of our
FuseSeg, we train and test the networks using the SUN-RGBD
v1 scene parsing benchmark data set [30]. We split the data
set into the train, validation, and test sets, which account for
around 51.14%, 24.43%, and 24.43%, respectively. All the
images are resized to 400×528 to increase training efficiency.

The thermal images are replaced by the depth images in the
experiment. Table X displays the results. We can see that our
FuseSeg-161 also achieves better performance, indicating that
FuseSeg could generalize well to RGB-D data.

VII. CONCLUSION AND FUTURE WORK

This article proposed a novel deep neural network for
RGB and thermal data fusion. We aimed to achieve superior
semantic segmentation performance under various lighting
conditions, and the experimental results confirmed the superi-
ority over the state of the arts. We performed intensive ablation
studies, which showed that the data fusion was a benefit here.
The ablation also proved the effectiveness of our network
design, including the encoder, decoder, and fusion strategy.
We also estimated the uncertainties of our network predictions
using the MC dropout technique. As aforementioned, our
inference speed on low-level computing platforms, such as
NVIDIA TX2, is slow. This may restrict the moving speed of
autonomous vehicles that are equipped with such platforms.
We consider it as our major limitation. In the future, we would
like to boost the runtime speed of the network using weight
pruning techniques. We will also design encoder backbones
that are more efficient and powerful than the general-purpose
backbones for our data fusion network. In addition, the data set
that we use is class imbalanced. We will tackle this problem
using focal-loss techniques [23] to improve our results.

To enable further studies, we list three promising research
directions. First, current fusion operations are not aware of
the image quality. For the case that one modal of data is
more informative than the other, fusion should give more
considerations for the data that are more informative. Thus,
how to determine the image quality and smartly do the fusion
is an open question. Second, the data set that we use is
not recorded as video sequences. We believe that previous
frames in a video sequence could provide stronger signals to
correct wrong segmentations and lower the uncertainties of
the segmentation in the current frame because they are visually
similar. Therefore, recording a new data set as video sequences
and improving the overall performance of networks given as
input more than one image is a research direction. Finally,
current low-cost off-the-shelf RGB-D cameras, such as Intel
RealSense D435, can work in outdoor environments, so they
can be used for autonomous vehicles. Different from thermal
imaging cameras that discriminate objects with temperature,
depth cameras differentiate objects by the measured pixelwise
distances to the camera. They can provide a totally different
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modality of information. Therefore, recording a new data
set together with an RGB-D camera and a thermal imaging
camera, and fusing RGB, thermal, as well as depth images in
a network to improve the segmentation performance is also a
research direction.
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